A Comparison of Neural Classifiers for Graffiti Recognition
نویسندگان
چکیده
منابع مشابه
Recognition of Graffiti Tags
Graffiti tagging, the inscription of an individual graffiti writer’s unique mark in public space, is considered to be an antisocial behaviour and is a criminal offense. Due to the costs involved in the removal of graffiti tags it would be desirable to deter tagging. A searchable database of graffiti images could be an integral part of the policing system aimed at deterring graffiti vandalism. I...
متن کاملNeural Network Classifiers for Speech Recognition
Neural nets offer an approach to computation thatmimics biological nervous systems. Algorithms based on neural nets have been proposed to address speech recognition tasks which humans perlorm with little apparent effort. In this paper, neural net classifiers are described and compared with conventional classification algorithms. Perceptron classifiers trained with a new algorithm, called back p...
متن کاملa comparison of linguistic and pragmatic knowledge: a case of iranian learners of english
در این تحقیق دانش زبانشناسی و کاربردشناسی زبان آموزان ایرانی در سطح بالای متوسط مقایسه شد. 50 دانش آموز با سابقه آموزشی مشابه از شش آموزشگاه زبان مختلف در دو آزمون دانش زبانشناسی و آزمون دانش گفتار شناسی زبان انگلیسی شرکت کردند که سوالات هر دو تست توسط محقق تهیه شده بود. همچنین در این تحقیق کارایی کتابهای آموزشی زبان در فراهم آوردن درون داد کافی برای زبان آموزان ایرانی به عنوان هدف جانبی تحقیق ...
15 صفحه اولComparison of fast nearest neighbour classifiers for handwritten character recognition
Ž . Recently some fast methods LAESA and TLAESA have been proposed to find nearest neighbours in metric spaces. The average number of distances computed by these algorithms does not depend on the number of prototypes and they show linear space complexity. These results where obtained through vast experimentation using only artificial data. In this paper, we corroborate this behaviour when appli...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Intelligent Learning Systems and Applications
سال: 2014
ISSN: 2150-8402,2150-8410
DOI: 10.4236/jilsa.2014.62008